C2 domains from different Ca2+ signaling pathways display functional and mechanistic diversity.
نویسندگان
چکیده
The ubiquitous C2 domain is a conserved Ca2+ triggered membrane-docking module that targets numerous signaling proteins to membrane surfaces where they regulate diverse processes critical for cell signaling. In this study, we quantitatively compared the equilibrium and kinetic parameters of C2 domains isolated from three functionally distinct signaling proteins: cytosolic phospholipase A2-alpha (cPLA2-alpha), protein kinase C-beta (PKC-beta), and synaptotagmin-IA (Syt-IA). The results show that equilibrium C2 domain docking to mixed phosphatidylcholine and phosphatidylserine membranes occurs at micromolar Ca2+ concentrations for the cPLA2-alpha C2 domain, but requires 3- and 10-fold higher Ca2+ concentrations for the PKC-beta and Syt-IA C2 domains ([Ca2+](1/2) = 4.7, 16, 48 microM, respectively). The Ca2+ triggered membrane docking reaction proceeds in at least two steps: rapid Ca2+ binding followed by slow membrane association. The greater Ca2+ sensitivity of the cPLA2-alpha domain results from its higher intrinsic Ca2+ affinity in the first step compared to the other domains. Assembly and disassembly of the ternary complex in response to rapid Ca2+ addition and removal, respectively, require greater than 400 ms for the cPLA2-alpha domain, compared to 13 ms for the PKC-beta domain and only 6 ms for the Syt-IA domain. Docking of the cPLA2-alpha domain to zwitterionic lipids is triggered by the binding of two Ca2+ ions and is stabilized via hydrophobic interactions, whereas docking of either the PKC-beta or the Syt-IA domain to anionic lipids is triggered by at least three Ca2+ ions and is maintained by electrostatic interactions. Thus, despite their sequence and architectural similarity, C2 domains are functionally specialized modules exhibiting equilibrium and kinetic parameters optimized for distinct Ca2+ signaling applications. This specialization is provided by the carefully tuned structural and electrostatic parameters of their Ca2+ and membrane-binding loops, which yield distinct patterns of Ca2+ coordination and contrasting mechanisms of membrane docking.
منابع مشابه
Changes in expression of klotho affect physiological processes, diseases, and cancer
Klotho (KL) encodes a single-pass transmembrane protein and is predominantly expressed in the kidney, parathyroid glands, and choroid plexus. Genetic studies on the KL gene have revealed that DNA hypermethylation is one of the major risk factors for aging, diseases, and cancer. Besides, KL exerts anti-inflammatory and anti-tumor effects by regulating signaling pathways and the expression of tar...
متن کاملInteraction of viral oncogenic proteins with the Wnt signaling pathway
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...
متن کاملPull-down combined with proteomic strategy reveals functional diversity of synaptotagmin I
Synaptotagmin I (Syt I) is most abundant in the brain and is involved in multiple cellular processes. Its two C2 domains, C2A and C2B, are the main functional regions. Our present study employed a pull-down combined with proteomic strategy to identify the C2 domain-interacting proteins to comprehensively understand the biological roles of the C2 domains and thus the functional diversity of Syt ...
متن کاملCa2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain?
C2-domains are widespread protein modules with diverse Ca2+-regulatory functions. Although multiple Ca2+ ions are known to bind at the tip of several C2-domains, the exact number of Ca2+-binding sites and their functional relevance are unknown. The first C2-domain of synaptotagmin I is believed to play a key role in neurotransmitter release via its Ca2+-dependent interactions with syntaxin and ...
متن کاملPlant Species and Functional Types’ Diversity in Relation to Grazing in Arid and Semi-arid Rangelands, Khabr National Park, Iran
In arid and semi-arid rangelands, grazing as one of the natural or human induced processes has direct and indirect effects on structure and dynamics of plant community and ecosystems. A study was done to analyze the effects of grazing on plant species diversity and Plant Functional Types‘ (PFTs) diversity of arid and semi-arid rangelands. We analyzed plant richness and diversity data from 75 sa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 40 10 شماره
صفحات -
تاریخ انتشار 2001